Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа имени С.Е. Кузнецова с. Чемодановка

Принято на педагогическом совете протокол № 2 от «30» августа 2019 г.

Директор иколь: Приказ № 79 от «30» августа 2019г.

Рабочая программа по учебному предмету

« Физика»

основного общего образования

с. Чемодановка 2019 год

Рабочая программа по учебному предмету «Физика»

Содержание

- 1.Планируемые результаты изучения учебного предмета Физика
- 2. Содержание учебного предмета «Физика"
- 3. Тематическое планирование с определением основных видов учебной деятельности

Рабочая программа предмета «Физика» для 7-9 класса составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования (приказ Минобрнауки России от 17.12.2010 № 1897 с последующими изменениями) на основе требований к результатам освоения основной образовательной программы основного общего образования МБОУ СОШ им. С.Е. Кузнецова с. Чемодановка.

На изучение предмета «Физика» в целом учебный план МБОУ СОШ им. С.Е. Кузнецова с. Чемодановка отводит 102 часа: в 7 классе – 34 часа (1 час в неделю), в 8 классе – 34 часа (1 час в неделю), в 9 классе – 34 часа(1 час в неделю).

На изучение предмета «Физика» учебный план МБОУ СОШ им. С.Е. Кузнецова с. Чемодановка из части, формируемой участниками образовательных отношений, отводит 102 часа: 7классе - 34 часа (1 час в неделю), в 8 классе - 34 часа (1 час в неделю).

На изучение предмета «Физика» учебный план МБОУ СОШ им. С.Е. Кузнецова с. Чемодановка отводит в общем объеме 204 часа (при 34 неделях учебного года). В 7 классе – 68 часов (2 часа в неделю), в 8 классе - 68 часов (2 часа в неделю).

1.Планируемые результаты изучения учебного предмета «Физика».

- **энания** о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- > умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- **умения** применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- » умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;
- **формирование** убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- **развитие** творческого мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;

коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации. **Метапредметным результатом** изучения курса является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- самостоятельно обнаруживать и формулировать учебную проблему, определять цель УД;
- выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

- составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
- разрабатывать простейшие алгоритмы на материале выполнения действий с физическими величинами,
- сверять, работая по плану, свои действия с целью и при необходимости исправлять ошибки самостоятельно (в том числе и корректировать план);
- совершенствовать в диалоге с учителем самостоятельно выбранные критерии оценки.

Познавательные УУД:

- формировать представление о физической науке как сфере человеческой деятельности, о её значимости в развитии цивилизации;
- проводить наблюдение и эксперимент под руководством учителя;
- осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
- определять возможные источники необходимых сведений, анализировать найденную информацию и оценивать её достоверность4
- использовать компьютерные и коммуникационные технологии для достижения своих целей;
- создавать и преобразовывать модели и схемы для решения задач;
- осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
- анализировать, сравнивать, классифицировать и обобщать факты и явления;
- давать определения понятиям.

Коммуникативные УУД:

- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
- в дискуссии уметь выдвинуть аргументы и контраргументы;
- учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его;
- понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты (физические законы);
- уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Предметные результаты

Механические явления

Выпускник научится:

- распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: равномерное и равноускоренное прямолинейное движение, свободное падение тел, невесомость, равномерное движение по окружности, инерция, взаимодействие тел, передача давления твёрдыми телами, жидкостями и газами, атмосферное давление, плавание тел, равновесие твёрдых тел, колебательное движение, резонанс, волновое движение;
- описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения, амплитуда, период и частота колебаний, длина волны и скорость её распространения; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, механические явления и процессы, используя физические законы и принципы: закон сохранения энергии, закон всемирного тяготения, равнодействующая сила, І, ІІ и ІІІ законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда; при этом различать словесную формулировку закона и его математическое выражение;
- различать основные признаки изученных физических моделей: материальная точка, инерциальная система отсчёта;
- решать задачи, используя физические законы (закон сохранения энергии, закон всемирного тяготения, принцип суперпозиции сил, I, II и III законы Ньютона, закон сохранения импульса, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, ускорение, масса тела, плотность вещества, сила, давление, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность, КПД простого механизма, сила трения скольжения, амплитуда, период и частота колебаний, длина волны и скорость её распространения): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания о механических явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о механических явлениях и физических законах; использования возобновляемых источников энергии; экологических последствий исследования космического пространства;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения механической энергии, закон сохранения импульса, закон всемирного тяготения) и ограниченность использования частных законов (закон Гука, закон Архимеда и др.);
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний по механике с использованием математического аппарата, оценивать реальность полученного значения физической величины.

Тепловые явления

Выпускник научится:

• распознавать тепловые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменение объёма тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твёрдых тел; тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, различные способы теплопередачи;

- описывать изученные свойства тел и тепловые явления, используя физические величины: количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения, находить формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, тепловые явления и процессы, используя закон сохранения энергии; различать словесную формулировку закона и его математическое выражение;
 - различать основные признаки моделей строения газов, жидкостей и твёрдых тел;
- решать задачи, используя закон сохранения энергии в тепловых процессах, формулы, связывающие физические величины (количество теплоты, внутренняя энергия, температура, удельная теплоёмкость вещества, удельная теплота плавления и парообразования, удельная теплота сгорания топлива, коэффициент полезного действия теплового двигателя): на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания о тепловых явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде; приводить примеры экологических последствий работы двигателей внутреннего сгорания (ДВС), тепловых и гидроэлектростанций;
- приводить примеры практического использования физических знаний о тепловых явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных физических законов (закон сохранения энергии в тепловых процессах) и ограниченность использования частных законов;
- приёмам поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний о тепловых явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Электрические и магнитные явления

Выпускник научится:

- распознавать электромагнитные явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: электризация тел, взаимодействие зарядов, нагревание проводника с током, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током, прямолинейное распространение света, отражение и преломление света, дисперсия света;
- описывать изученные свойства тел и электромагнитные явления, используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами;
- анализировать свойства тел, электромагнитные явления и процессы, используя физические законы: закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света, закон преломления света; при этом различать словесную формулировку закона и его математическое выражение;
- решать задачи, используя физические законы (закон Ома для участка цепи, закон Джоуля—Ленца, закон прямолинейного распространения света, закон отражения света,

закон преломления света) и формулы, связывающие физические величины (сила тока, электрическое напряжение, электрическое сопротивление, удельное сопротивление вещества, работа тока, мощность тока, фокусное расстояние и оптическая сила линзы, формулы расчёта электрического сопротивления при последовательном и параллельном соединении проводников); на основе анализа условия задачи выделять физические величины и формулы, необходимые для её решения, и проводить расчёты.

Выпускник получит возможность научиться:

- использовать знания об электромагнитных явлениях в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
- приводить примеры практического использования физических знаний о электромагнитных явлениях;
- различать границы применимости физических законов, понимать всеобщий характер фундаментальных законов (закон сохранения электрического заряда) и ограниченность использования частных законов (закон Ома для участка цепи, закон Джоуля—Ленца и др.);
- приёмам построения физических моделей, поиска и формулировки доказательств выдвинутых гипотез и теоретических выводов на основе эмпирически установленных фактов;
- находить адекватную предложенной задаче физическую модель, разрешать проблему на основе имеющихся знаний об электромагнитных явлениях с использованием математического аппарата и оценивать реальность полученного значения физической величины.

Квантовые явления

Выпускник научится:

- распознавать квантовые явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений: естественная и искусственная радиоактивность, возникновение линейчатого спектра излучения;
- описывать изученные квантовые явления, используя физические величины: скорость электромагнитных волн, длина волны и частота света, период полураспада; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы измерения; указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;
- анализировать квантовые явления, используя физические законы и постулаты: закон сохранения энергии, закон сохранения электрического заряда, закон сохранения массового числа, закономерности излучения и поглощения света атомом;
- различать основные признаки планетарной модели атома, нуклонной модели атомного ядра;
- приводить примеры проявления в природе и практического использования радиоактивности, ядерных и термоядерных реакций, линейчатых спектров.

Выпускник получит возможность научиться:

- использовать полученные знания в повседневной жизни при обращении с приборами (счетчик ионизирующих частиц, дозиметр), для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;
 - соотносить энергию связи атомных ядер с дефектом массы;
- приводить примеры влияния радиоактивных излучений на живые организмы; понимать принцип действия дозиметра;
- понимать экологические проблемы, возникающие при использовании атомных электростанций, и пути решения этих проблем, перспективы использования управляемого термоядерного синтеза.

Элементы астрономии

Выпускник научится:

- различать основные признаки суточного вращения звёздного неба, движения Луны, Солнца и планет относительно звёзд;
 - понимать различия между гелиоцентрической и геоцентрической системами мира. Выпускник получит возможность научиться:
- указывать общие свойства и отличия планет земной группы и планет-гигантов; малых тел Солнечной системы и больших планет; пользоваться картой звёздного неба при наблюдениях звёздного неба;

различать основные характеристики звёзд (размер, цвет, температура), соотносить цвет звезды с её температурой;

• различать гипотезы о происхождении Солнечной системы.

2. Содержание учебного предмета «Физика»

І. Ведение

Предмет и методы физики. Экспериментальный метод изучения природы. Измерение физических величин.

Погрешность измерения. Обобщение результатов эксперимента.

Использование простейших измерительных приборов. Физика и техника.

Фронтальная лабораторная работа.

1. Измерение физических величин с учетом абсолютной погрешности.

II. Первоначальные сведения о строении вещества.

Гипотеза о дискретном строении вещества. Молекулы. Непрерывность и хаотичность движения частиц вещества.

Диффузия. Броуновское движение. Модели газа, жидкости и твердого тела.

Взаимодействие частиц вещества. Взаимное притяжение и отталкивание молекул.

Три состояния вещества.

Фронтальная лабораторная работа.

2. Измерение размеров малых тел.

III. Взаимодействие тел.

Механическое движение. Равномерное и не равномерное движение. Скорость.

Расчет пути и времени движения. Траектория. Прямолинейное движение.

Взаимодействие тел. Инерция. Масса. Плотность.

Измерение массы тела на весах. Расчет массы и объема по его плотности.

Сила. Силы в природе: тяготения, тяжести, трения, упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Динамометр. Сложение двух сил, направленных по одной прямой. Трение.

Упругая деформация.

Фронтальная лабораторная работа.

- 3. Изучение зависимости пути от времени при прямолинейном равномерном движении. Измерение скорости.
- 4. Измерение массы тела на рычажных весах.
- 5. Измерение объема твердого тела.
- 6. Измерение плотности твердого вещества.
- 7. Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины.
- 8. Исследование зависимости силы трения скольжения от силы нормального давления.
- 9. Определение центра тяжести плоской пластины.

IV.Давление твердых тел, жидкостей и газов.

Давление. Опыт Торричелли.

Барометр-анероид.

Атмосферное давление на различных высотах. Закон Паскаля. Способы увеличения и уменьшения давления.

Давление газа. Вес воздуха. Воздушная оболочка. Измерение атмосферного давления. Манометры.

Поршневой жидкостный насос. Передача давления твердыми телами, жидкостями, газами.

Действие жидкости и газа на погруженное в них тело. Расчет давления жидкости на дно и стенки сосуда.

Сообщающие сосуды. Архимедова сила. Гидравлический пресс.

Плавание тел. Плавание судов. Воздухоплавание.

Фронтальная лабораторная работа.

- 10. Измерение давления твердого тела на опору
- 11. Измерение выталкивающей силы, действующей на погруженное в жидкость тело.
- 12. Выяснение условий плавания тела в жидкости.

V. Работа и мощность. Энергия.

Работа. Мощность. Энергия. Кинетическая энергия. Потенциальная энергия. Закон сохранения механической энергии. Простые механизмы. КПД механизмов.

Рычаг. Равновесие сил на рычаге. Момент силы. Рычаги в технике, быту и природе.

Применение закона равновесия рычага к блоку. Равенство работ при использовании простых механизмов. «Золотое правило» механики.

Фронтальная лабораторная работа.

- 13. Выяснение условия равновесия рычага.
- 14. Измерение КПД при подъеме по наклонной плоскости.

І. Тепловые явления.

Внутренняя энергия. Тепловое движение. Температура. Теплопередача. Необратимость процесса теплопередачи.

Связь температуры вещества с хаотическим движением его частиц. Способы изменения внутренней энергии.

Теплопроводность.

Количество теплоты. Удельная теплоемкость.

Конвекция.

Излучение. Закон сохранения энергии в тепловых процессах.

Плавление и кристаллизация. Удельная теплота плавления. График плавления и отвердевания.

Преобразование энергии при изменениях агрегатного состояния вещества.

Фронтальная лабораторная работа.

- 1. Исследование изменения со временем температуры остывающей воды
- 2. Сравнение количеств теплоты при смешивании воды разной температуры.
- 3. Измерение удельной теплоемкости твердого тела.

И. Изменение агрегатных состояний вещества.

Испарение и конденсация. Удельная теплота парообразования и конденсации.

Работа пара и газа при расширении.

Кипение жидкости. Влажность воздуха.

Тепловые двигатели.

Энергия топлива. Удельная теплота сгорания.

Агрегатные состояния. Преобразование энергии в тепловых двигателях.

КПД теплового двигателя.

Фронтальная лабораторная работа.

4. Измерение относительной влажности воздуха

III. Электрические явления.

Электризация тел. Электрический заряд. Взаимодействие зарядов. Два вида электрического заряда. Дискретность электрического заряда. Электрон.

Закон сохранения электрического заряда. Электрическое поле. Электроскоп. Строение атомов.

Объяснение электрических явлений.

Проводники и непроводники электричества.

Действие электрического поля на электрические заряды.

Постоянный электрический ток. Источники электрического тока.

Носители свободных электрических зарядов в металлах, жидкостях и газах. Электрическая цепь и ее составные части. Сила тока. Единицы силы тока. Амперметр. Измерение силы тока. Напряжение. Единицы напряжения. Вольтметр. Измерение напряжения. Зависимость силы тока от напряжения.

Сопротивление. Единицы сопротивления.

Закон Ома для участка электрической цепи.

Расчет сопротивления проводников. Удельное сопротивление.

Примеры на расчет сопротивления проводников, силы тока и напряжения.

Реостаты.

Последовательное и параллельное соединение проводников. Действия электрического тока Закон Джоуля-Ленца. Работа электрического тока.

Мощность электрического тока.

Единицы работы электрического тока, применяемые на практике.

Счетчик электрической энергии. Электронагревательные приборы.

Расчет электроэнергии, потребляемой бытовыми приборами.

Нагревание проводников электрическим током.

Количество теплоты, выделяемое проводником с током.

Лампа накаливания. Короткое замыкание.

Предохранители.

Зависимость силы тока от напряжения на участке электрической цепи.

Фронтальная лабораторная работа.

- 5. Сборка электрической цепи и измерение силы тока в ее различных участках.
- 6.Измерение напряжения на различных участках электрической цепи.
- 7. Регулирование силы тока реостатом.
- 8. Исследование зависимости силы тока в проводнике от напряжения на его концах при постоянном сопротивлении. Измерение сопротивления проводника
- 9. Измерение работы и мощности электрического тока.

IV. Электромагнитные явления.

Магнитное поле. Графическое изображение магнитного поля. Электромагнит. Постоянные магниты. Магнитное поле Земли. Действие магнитного поля на проводник с током. Электрический двигатель

Фронтальная лабораторная работа.

- 10. Сборка электромагнита и испытание его действия
- 11. Изучение электрического двигателя постоянного тока.(на модели).

V. Световые явления.

Источники света.

Прямолинейное распространение, отражение и преломление света. Луч. Закон отражения света.

Плоское зеркало. Линза. Оптическая сила линзы. Изображение даваемое линзой.

Измерение фокусного расстояния собирающей линзы.

Оптические приборы.

Глаз и зрение. Очки.

Фронтальная лабораторная работа.

12. Исследование зависимости угла отражения от угла падения света.

- 13. Исследование зависимости угла преломления от угла падения света
- 14. Измерение фокусного расстояния собирающей линзы. Получение изображения с помощью линзы.

І. Законы взаимодействия и движения тел.

Материальная точка. Траектория. Скорость. Перемещение. Система отсчета.

Определение координаты движущего тела.

Графики зависимости кинематических величин от времени.

Прямолинейное равноускоренное движение.

Скорость равноускоренного движения.

Перемещение при равноускоренном движении.

Определение координаты движущего тела.

Графики зависимости кинематических величин от времени.

Ускорение. Относительность механического движения. Инерциальная система отсчета.

Первый закон Ньютона.

Второй закон Ньютона.

Третий закон Ньютона. Свободное падение

Закон Всемирного тяготения.

Криволинейное движение

Движение по окружности.

Импульс. Закон сохранения импульса. Реактивное движение.

Фронтальная лабораторная работа.

- 1. Исследование равноускоренного движения без начальной скорости.
- 2.Измерение ускорения свободного падения.

III. Механические колебания и волны. Звук.

Механические колебания. Амплитуда. Период, частота. Свободные колебания. Колебательные системы. Маятник.

Зависимость периода и частоты нитяного маятника от длины нити.

Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания.

Механические волны. Длина волны. Продольные и поперечные волны. Скорость распространения волны.

Звук. Высота и тембр звука. Громкость звука/

Распространение звука.

Скорость звука. Отражение звука. Резонанс.

Фронтальная лабораторная работа.

- 3. Исследование зависимости периода колебаний пружинного маятника от массы грузу и жесткости пружины
- 4. Исследование зависимости периода и частоты свободных колебаний маятника от его длины.

IV. Электромагнитное поле.

Взаимодействие магнитов.

Магнитное поле.

Взаимодействие проводников с током.

Действие магнитного поля на электрические заряды. Графическое изображение магнитного поля.

Направление тока и направление его магнитного поля.

Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки.

Магнитный поток. Электромагнитная индукция.

Явление электромагнитной индукции. Получение переменного электрического тока.

Электромагнитное поле. Неоднородное и неоднородное поле. Взаимосвязь электрического и магнитного полей.

Электромагнитные волны. Скорость распространения электромагнитных волн.

Электродвигатель.

Электрогенератор

Свет – электромагнитная волна.

Фронтальная лабораторная работа.

5.Изучение явления электромагнитной индукции.

6. Наблюдение сплошного и линейчатых спектров испускания.

V.Строение атома и атомного ядра.

Радиоактивность. Альфа-, бетта- и гамма-излучение. Опыты по рассеиванию альфа-частиц.

Планетарная модель атома. Атомное ядро. Протонно-нейтронная модель ядра.

Методы наблюдения и регистрации частиц. Радиоактивные превращения.

Экспериментальные методы.

Заряд ядра. Массовое число ядра.

Ядерные реакции. Деление и синтез ядер. Сохранение заряда и массового числа при ядерных реакциях.

Открытие протона и нейтрона. Ядерные силы.

Энергия связи частиц в ядре.

Энергия связи. Дефект масс. Выделение энергии при делении и синтезе ядер.

Использование ядерной энергии. Дозиметрия.

Ядерный реактор. Преобразование Внутренней энергии ядер в электрическую энергию.

Атомная энергетика. Термоядерные реакции.

Биологическое действие радиации.

Фронтальная лабораторная работа.

- 7. Изучение деления ядра урана по фотографии треков.
- 8. Изучение треков заряженных частиц по готовым фотографиям.
- 9. Измерение естественного радиационного фона дозиметром.